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Abstract

The present investigation is concerned with elastic wave motion in infinite transversely isotropic plate by
asymptotic method. The differential equations for the flexural and extensional motions are derived from the
system of three-dimensional dynamical equations of linear elasticity. All coefficients of the differential
operator are presented as explicit functions of the material parameter g ¼ c2s=c2l ; the ratio of the squared
velocities of flexural (shear) and extensional (longitudinal) waves. The velocity dispersion equations for the
flexural and extensional wave motions are deduced analytically from the three-dimensional analog of
Rayleigh–Lamb frequency equation for plates. The approximations for long and short waves are also
obtained. The dispersion curves for phase velocity and group velocity spectrum are shown graphically for
flexural and extensional wave motions of the plate. The results for isotropic materials have been deduced as
special cases.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years considerable attention has been devoted to the problems of elastic wave motion
in infinite plates because of its technical importance. Especially, notable are the works of Mindlin
[1], Mindlin and Medick [2], Bache and Hegemier [3] and Losin [4,5]. Although a comprehensive
review of the previous work is avoided here, we have to mention of some significant contributions
to fields very closely related to the present topic, e.g., by Liu and Achenbach [6,7], Liu et al. [8–12],
Liu and Tani [13], and Liu and Lam [14], on anisotropic linear solids, laminated plates, bars and
strips. According to some recent publications [15–19] no simple direct relations between velocity,
frequency and wave number for infinite plates are available at the present time. The asymptotic
expansion of the frequency equation for flexural waves in a plate generated by the Rayleigh–Lamb
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equation does not give an adequate approximation, even for velocities vocS: Moreover, three-
dimensional wave propagation is possible at velocities vocS: All this motivates the search for
some different approach to solution of the problem. The present study is an attempt to find a
frequency and velocity dispersion relation from three-dimensional analog of the Rayleigh–Lamb
frequency equation that would be adequate for flexural and extensional wave motions. The
asymptotic method applied by Protsenko [20] for thin n-shelled structures is employed in this
investigation.

2. Formulation of the problem

We consider free wave motion in a homogeneous transversely isotropic elastic plate of thickness
2h; bounded by two stress free planes z ¼ 7h; and infinite in ðx; yÞ directions. We formulate the
corresponding dynamic boundary value problem of linear elasticity in matrix form:
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where ~UU ðx; y; z; tÞ ¼ ðu; v;wÞt is the displacement vector,~tt ¼ ðtXz; tYz; tZzÞ
t is the stress vector and

I is the identity matrix. Here Eq. (1) is the system of equations of motion written in terms of
elastic parameters cij and density r; the boundary conditions (2) express the absence of stresses at
the free plate’s surfaces z ¼ 7h:

We assume solutions in the form of a harmonic wave

~UU ðx; y; z; tÞ ¼ ~uuðzÞ expf�iðkxx þ kyy � otÞg; ð3Þ

where ~uuðzÞ ¼ fUðzÞ;V ðzÞ;W ðzÞgt is the amplitude vector, o ¼ oð~kkÞ is the circular frequency
depending on the wave number ~kk ¼ ðkx; kyÞ:

Using Eq. (3) in Eqs. (1) and (2), we get

D~uu00 � B0ðkÞ~uu0 � C0ðkÞ~uu ¼ 0; �hozoh; ð4Þ

~ttðz; kÞ ¼ D~uu0 � A0ðkÞ~uu ¼ 0; z ¼ 7h; ð5Þ
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where
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~vv is the phase velocity and v is the phase speed of a travelling wave and ~nn is the unit direction
vector. Eqs. (4) and (5) can finally lead to the boundary value problem in matrix form as the
following system of ordinary differential equations:

~uu00 ¼ #BðkÞ~uu0 þ #CðkÞ~uu; �hozoh; ð7Þ
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where
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Here tcðz; kÞ ¼ rD�1tðz; kÞ ¼ ðtxz=c2s ; tyz=c2s ; tzz=c2l Þ is the modified stress vector, cS; cl are
velocities (speeds) of the shear and extensional waves, respectively.

3. Asymptotic boundary value problem

We assume that tcðz; kÞ has a finite asymptotic expansion of the form

tcðz; kÞ ¼
XN

n¼0

tðnÞc ðxÞen þ oðeNÞ; x ¼
z

h
; e ¼ kh;

and approximate it by Taylor series in zð�hozohÞ; about z ¼ 0 so that

tcðzÞ ¼ rð~uu0 � #AðkÞ~uuÞ ¼
XN

n¼0

tðnÞc ð0Þzn=n þ oðzNÞ;

where the second argument is omitted for convenience. We denote tþc ¼ tcðhÞ; t�c ¼ tcð�hÞ and
combine them as

tþc þ t�c ¼ 0; tþc � t�c ¼ 0:

We obtain the boundary conditions in the asymptotic form:

tcð0Þ þ
h2

2
t00c ð0Þ þ

h4

24
tð4Þc ð0ÞE0; ð9Þ

t0cð0Þ þ
h2

2
t000c ð0Þ þ

h4

120
tð5Þc ð0ÞE0: ð10Þ

Differentiating tcðzÞ with respect to z five times,

tðnÞc ðzÞ ¼ rð~uuðnþ1Þ � #AðkÞ~uuðnÞÞ; n ¼ 1; 2; 3; 4; 5; ð11Þ

and substituting Eq. (11) at z ¼ 0 into Eqs. (9) and (10), we arrive at the asymptotic boundary
value problem

~uu00 ¼ #BðkÞ~uu0 þ #CðkÞ~uu; �hozoh; ð12Þ

~uu0ð0Þ � #AðkÞ~uuð0Þ þ
h2

2
ð~uu000ð0Þ � #AðkÞ~uu00ð0ÞÞ þ

h4

24
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6
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120
ð~uuð6Þð0Þ � #AðkÞ~uuð5Þð0ÞÞE0: ð14Þ

Eqs. (13) and (14) are valid at the free surfaces z ¼ 7h:

4. Resolving operator equation

The asymptotic boundary value problem, i.e., system of equations (12)–(14) can be reduced to
one resolving operator equation written in terms of lambda matrices [21]. Upon differentiating

ARTICLE IN PRESS

J.N. Sharma, R. Kumar / Journal of Sound and Vibration 274 (2004) 747–759750



Eq. (12) four times we obtain

~uuðnþ2Þ ¼ #BðkÞ~uuðnþ1Þ þ #CðkÞ~uuðnÞ; n ¼ 1; 2; 3; 4;

and again using Eq. (12), we express ~uunð0Þ; n ¼ 1; 2; 3;y; 6 in Eqs. (13) and (14) through ~uuð0Þ and
~uu0ð0Þ with new matrix coefficients, as
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where

G ¼ C þ ðB � AÞB; H ¼ ðB � AÞC; K ¼ H þ GB; E ¼ L þ KB;

P ¼ EB þ F ; L ¼ GC; F ¼ KC; Q ¼ EC:

Now, we consider the waves propagating along x-axis, so that ~nn ¼ ð1; 0Þ: In this case, the
matrices G and E have the diagonal structures

G ¼ diagðg11; g22; g33Þ;E ¼ diagðe11; e22; e33Þ;

and the matrix coefficient

M ¼ diagðm11;m22;m33Þ;

in front of ~uu0ð0Þ; in Eq. (15) has the form
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2
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The diagonal matrix M is easily invertible,

M�1 ¼ diagfm�1
11 ;m

�1
22 ;m

�1
33 g; mjja0;

and Eq. (15) can be solved for ~uu0ð0Þ as

~uu0ð0ÞEkM�1 A �
k2h2

2
H �

k4h4

24
F

� �
~uuð0Þ: ð18Þ
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Substituting Eq. (18) into Eq. (16), we finally come to the resolving operator of the form

T~uuð0Þ ¼ T0 þ
k2h2

6
T2 þ

k4h4

120
T4

� �
~uuð0ÞE0; ð19Þ

where

T0 ¼ C þ ðB � AÞM�1A; T2 ¼ L þ KM�1A � 3ðB � AÞM�1H;

T4 ¼ Q þ PM�1A � 10KM�1H � 5ðB � AÞM�1F :

The matrix of the operator T has a diagonal block structure (in general) where the blocks
governing flexural ðTSÞ and in plane ðTLÞ motion are separated as

T~uuð0Þ ¼
TL 0

0 TS

" # uð0Þ

vð0Þ

wð0Þ

2
64

3
75E0; ð20Þ

where

TL ¼
t11 t12

t21 t22

" #
; TS ¼ t33: ð21Þ

The system of Eq. (20) has non-trivial solution, if

det T ¼ det TL det TS ¼ 0: ð22Þ

This implies that

det TL ¼ 0; ð23Þ

det TS ¼ 0 or t33 ¼ 0: ð24Þ

Eq. (22) is the three-dimensional analog of the Rayleigh–Lamb frequency equation for a plate.
Eqs. (23) and (24) are the corresponding frequency equation for extensional and flexural waves,
respectively.

5. Flexural motion of a plate

Eq. (24) is the third equation of system (20) that governs the flexural vibrations, since the
operator TS ¼ t33 affects the displacement w only. This equation generates the dispersion
equation and the velocity equation of a plate’s flexural motion. According to structure (19) of the
operator T ; Eq. (24) has the form

t
ð0Þ
33 þ

k2h2

6
t
ð2Þ
33 þ

k4h4

120
t
ð4Þ
33 ¼ 0; ð25Þ

where

t
ð0Þ
33 ¼ �

g
m11

½1� m11ð1� v2SÞ�;
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t
ð2Þ
33 ¼ l33 �

k31

m11
þ 3gðc3 � c2Þð1� v2SÞ=m11;

t
ð4Þ
33 ¼ gð1� v2SÞe33 � fc3e33=c1 þ ð1� c2v2SÞ=c2k13g=m11

þ 10ðc3 � c2Þð1� v2SÞk31=c1m11 þ 5g2ð1� v2SÞk13=m11: ð26Þ

Eq. (25) is the velocity equation for the flexural vibration of a plate. For isotropic materials, we
have

c11 ¼ c33 ¼ lþ 2m; c44 ¼ m; c13 ¼ c12 ¼ l; so that

c1 ¼ 1; c2=c1 ¼ g ¼
m

lþ 2m
; c3 ¼ 1� g ¼ c4: ð27Þ

As a consequence, in this case, we have

t
ð0Þ
33 ¼

�g
m11

½1� m11ð1� v2SÞ�; t
ð2Þ
33 ¼

1

m11
ðm11L33 � K31 þ 3gH13Þ;

t
ð4Þ
33 ¼

g
m11

m11ð1� v2SÞE
�
33 þ 1�

1

g

� �
E�

33 �
F�
31

g
þ

10H31k31

g
þ

5

g
F�
13

� �
;

where

L33 ¼ g2 2�
1

g

� �
� v2S

� �
ð1� v2SÞ; K31 ¼ gð3� 2gÞ � ð2� gÞv2S;

H13 ¼ ð1� 2gÞð1� v2SÞ; H31 ¼ 1� v2S; E�
33 ¼ E33v4S þ E31v2S � E30;

F�
31 ¼ F10 � F11v2S þ F12v4S; F�

13 ¼ F30 � F31v2S þ F32v4S: ð28Þ

The quantities Eij ;Fij in Eq. (28) can be computed from the relevant relations of the previous
section by making use of relation (17). The value of t

ð0Þ
33 has been wrongly calculated in the case of

isotropic material by Losin [4] and consequently some of the expressions and corresponding
results as well as conclusions drawn by him following Eqs. (27) of his paper are incorrect.
Substitution of Eq. (26) into Eq. (25) gives us

b0v10S � b1 þ
20

k2h2
a0

� �
v8S þ b2 þ

20

k2h2
a1 þ

120

k4h4
C0

� �
v6S

� b3 þ
20

k2h2
a2 þ

120

k2h2
C1

� �
v4s þ b4 þ

20

k2h2
a3 þ

120

k2h2
C2

� �
v2S

� b5 þ
20

k2h2
a4 þ

120

k4h4
C3

� �
¼ 0; ð29Þ

where

b0 ¼ E33; a0 ¼
3

5
E33 þ g; C0 ¼ 1�

E33

5
� 2g;

b1 ¼ E33 � E31 � E33E11; a1 ¼
3

5
ðE33G10 þ E33 � E31Þ þ gE11;

ARTICLE IN PRESS

J.N. Sharma, R. Kumar / Journal of Sound and Vibration 274 (2004) 747–759 753



C1 ¼ 1� E11 � 2ð2g� c3=c1Þ þ 2gG10 þ
1

5
ðE33 � E31Þ;

a2 ¼ gE10 þ 2g�
c3

c1

� �
E11 �

c3

c1
� g

� �
þ

3

5
ðE13 þ E30Þ �

3

5
ðE33 þ E31Þ;

b2 ¼ E10E33 þ E11ðE31 � E33Þ � E31 � E30;

C2 ¼ 2ð2g� c3=c1ÞG10 � 2ðc3=c1 � gÞ �
1

5
ðE31 þ E30Þ;

a3 ¼
3

5
ð1þ G10 � E30Þ þ ð2g� c3=c1ÞE10 þ ðc3=c1 � gÞE11 �

3

5
G10ðE31 þ E30Þ

� 10
ðc3 � c2Þ

c2
ðc1 þ c3Þ � 5F12;

C3 ¼ E10 � 2G10ðc3=c1 � gÞ �
E30

5
; a4 ¼ �

3

5
E30G10 � ðc3=c1 � gÞE10;

b4 ¼E11E30 þ
c3

c2
E33 þ gF32 � 10

c3 � c2

c1c2

� �
ðc1 þ c3Þc2 þ 1�

c3ðc3 � c2Þ
c1

� �
� 5F11 � E11 � E10 � E10ðE31 þ E30Þ;

b5 ¼ gF30 �
c3

c2
E30 þ 10

ðc3 � c2Þ
c21c2

½c21 � c3ðc3 � c2Þ� þ 5F10 � E30E10;

E10 ¼
c1 � c3ðc3 � c2Þ

c21c22
�

c1c23 � c3ðc2 þ c3Þðc3 � c2Þ
2

c21c22
; ð30Þ

E11 ¼
c23ðc1 þ c2Þ � c3c22

c21c2
�

2c1 � c3ðc3 � c2Þ
c1c2

; E30 ¼
c22ðc3 � c2Þ � c1c3 � c23ðc3 � c2Þ

c21c2
;

E31 ¼
c2 � c3ðc1 þ c3Þ

c1c2
�

c22
c21

þ
c2ðc3 � c2Þ

c21
; E33 ¼ g2;

F10 ¼
c1c3 � ðc2 þ c3Þðc3 � c2Þ

2

c21c2
; F12 ¼

c3ðc2 � c1Þ � c22
c21

; F30 ¼
c1 � 2c3 þ c2

c21c2
;

F31 ¼ c2F30 þ
1

c2
F32; F32 ¼

c2ðc1 þ c3Þ
c1

; G10 ¼
1

c2
�

c3ðc3 � c2Þ
c1c2

: ð31Þ

6. Long and short wave approximations

For long waves, the wavelength is very large compared to the thickness 2h of the plate, i.e.,
kh-0: The limiting form of Eq. (29) after taking vs ¼ os=k is given by

o6
s o4

s �
20

h2

3

5
þ g

� �
o2

s þ g2 �
1

5
þ 2g

� �� �
¼ 0: ð32Þ
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This equation obviously has three trivial roots os ¼ 0 and the corresponding phase velocity is also
equal to zero. The quadratic equation in Eq. (32) with coefficients depending on h and g; gives two
more roots in the general case.

For short wave approximation, the wavelength is very small compared to the thickness of a
plate. The substitution of kh-N in Eq. (29) gives the limiting form of the velocity equation:

b0v10s � b1v8s þ b2v6s � b3v4s þ b4v25 � b5 ¼ 0: ð33Þ

The roots of this equation are phase velocities of short wave modes depending on the material
parameter g only. This equation has five finite real roots that correspond to the velocities of the first
five wave modes. The fundamental mode approaches the velocity of Rayleigh’s surface wave cR:

7. Extensional motion of a plate

The velocity equation for extensional motion of a plate is given by Eq. (23), viz.,

det TL ¼ 0 or t11t22 ¼ 0: ð34Þ

The diagonal structure of the operator T implies that the system of propagation equations has the
form tjjuj ¼ 0 ðj ¼ 1; 2; 3Þ where each of the equation affects only one of the displacement
components u1 ¼ u; u2 ¼ v; u3 ¼ w and hence all the three equations being independent can be
analyzed separately. Therefore, we can take t11u ¼ 0 as a propagation equation that governs the
longitudinal wave motion along x-axis and hence equation t11u ¼ 0 that follows from Eq. (34) is a
corresponding dispersion relation, which generates the frequency and velocity of the plate’s
extensional motion and has the form

R0v10s þ R1 �
20R0

k2h2

� �
v8s þ R2 þ

20

k2h2
s1 þ

120

k4h4
R0

� �
v6s

þ R3 þ
20

k2h2
s2 þ

120

k4h4
P1

� �
v4s þ R4 þ

20

k2h2
s3 þ

120

k4h4
P2

� �
v2s

þ R5 þ
20

k2h2
s4 þ

120

k4h4
P3

� �
¼ 0; ð35Þ

where

R0 ¼ �E33; R1 ¼
E33

c2
� M33 � E11E33; R2 ¼

1

c2
ðM33 þ E11E33Þ � ðM33E11 þ M31Þ;

R3 ¼
1

c2
ðE11M33 þ M31Þ � ðE33M33 þ E11M31Þ; R4 ¼

1

c2
ðE33M33 þ E11M31Þ � E33M31;

R5 ¼
1

c2
E33M31; S0 ¼ �R0; S1 ¼ M33 �

1

c2
þ

c1 � c3ðc3 � c2Þ
c1c2

þ
3ðc3 � c2Þ

c1

� �
E33;

S2 ¼ M31 � M33
1

c2
þ

c1 � c3ðc3 � c2Þ
c1c2

þ
3ðc3 � c2Þ

c1

� �
þ E33

3ðc3 � c2Þ
c1

þ
c1 � c3ðc3 � c2Þ

c1c22

� �
;
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S3 ¼ M33
3ðc3 � c2Þ

c1c2
þ

c1 � c3ðc3 � c2Þ
c1c22

� �
� M31 �

1

c2
þ

c1 � c3ðc3 � c2Þ
c1c2

þ
3ðc3 � c2Þ

c1

� �
;

S4 ¼ M31 �
c1 � c3ðc3 � c2Þ

c1c22
þ

3ðc3 � c2Þ
c1c2

� �
; P0 ¼ R0;

P1 ¼
E33

c2
� M33

� �
þ

Q1

5
; P2 ¼

M33

c2
� M31

� �
þ

Q1

5
; P3 ¼

M31

c2
þ

Q3

5

� �
:

Eq. (35), in case of short wave ðkh-NÞ reduces to

R0v10s þ R1v8s þ R2v6s þ R3v43 þ R4v22 þ R5 ¼ 0; ð36Þ

and in case of long waves ðkh-0Þ Eq. (35) takes the form

o6
s R0o4

s þ
20s0

h2
o2

s þ
120R0

h4

� �
¼ 0: ð37Þ

The second equation of the diagonalized system, t22v ¼ 0; governs the inplane wave motion in the
same direction and affects the v component of the displacement vector. Its dispersion relation is
t22 ¼ 0; which provides us v2 ¼ c2s as a unique real root of multiplicity one for long wave and of
multiplicity three for short wave asymptotics which agrees with Losin [5] (cf. Eq. (19) in which the
factors h2 and h4 are missing in the second and third terms under the braces).

8. Numerical results and discussions

With the view to illustrate and verify the theoretical developments in the previous sections, we
present some numerical results in order to explain some hidden basic features of the extensional
and flexural mode of wave propagation in an infinite homogenous transversely isotropic plate.
The material chosen for this purpose is magnesium, the physical data of which is given by Sharma
and Singh [22].

c11 ¼ 5:975 1010 N m�2; c12 ¼ 2:625 1010 N m�2; c13 ¼ 2:17 1010 N m�2;

c33 ¼ 6:17 1010 N m�2; c44 ¼ 1:639 1010 N m�2; f ¼ 1:74 103 kg m�3:

The dispersion curves for phase and group velocity for the first (fundamental) and second modes
of extensional and flexural waves computed from relations (25) and (34) are given in Figs. 1 and 2
respectively. All the modes are found to be dispersive in character. The iteration method has been
used to solve these dispersion equations. This method requires to put the equation f ðvÞ ¼ 0 into
the form v ¼ gðvÞ; so that the sequence fvng of iteration for the desired root can be easily
generated as follows: If v0 is the initial approximation to the root, then v1 ¼ gðv0Þ; v2 ¼ gðv1Þ; v3 ¼
gðv2Þ; etc. In general, vnþ1 ¼ gðvnÞ; n ¼ 0; 1; 2; 3;y : If jg0ðvÞj{1; for all vAI ; then the sequence
fvng of approximations to the root will converge to the actual value v ¼ z of the root, provided
v0AI where I is the interval where the root is expected. This process is repeated time and again for
a particular value of the non-dimensional wave number kh; unless the sequence of iteration to the
value of v converges to desired level of accuracy, i.e., jvnþ1 � vnj+e; e being an arbitrary small
number to be selected at random in order to achieve the accuracy level. The procedure has been
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continuously repeated for different values of the non-dimensional wave number kh to obtain the
phase velocity. Here the value of velocity has been allowed to iterate approximately for 50
iterations to make it converge in order to achieve the accuracy up to four decimal places. We have
used terms of order ðkhÞ4 of the series and calibrated the data for the range 0pkhp10 of wave
number, without affecting the accuracy level here. The group velocity is also obtained by adopting
the same procedure.

The graphs of phase and group velocities of extensional modes given in Fig. 1 look similar to
the corresponding graphs of Tolstoy and Usdin [23,24] except that these are slightly modified due
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Fig. 1. Variation of phase and group velocities of extensional modes with wave number.

Fig. 2. Variation of phase and group velocities of flexural modes with wave number.
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to the anisotropic effects of the material. The graphs of these quantities for first (fundamental)
mode have the common limit, viz., velocity of longitudinal thin plate wave at low frequencies
(long waves) and tend to the velocity of Rayleigh surface waves for short waves ðkh-NÞ: The
velocity of the second mode is approximated reasonably well for short waves and intermediate
wavelength and it may be associated with same antisymmetric motion of the plate as in
Refs. [19,25,26]. The group velocities are found to be in agreement and no negative group velocity
for extensional modes is noticed in this case. In contrast to Ref. [5] the velocity spectrum behavior
of the second mode is found to be in agreement for long-wave approximation as the theory is
substantiated best ðkh-0Þ and numerical results at short waves ðkh-NÞ have been affected by a
greater approximation error. This acceptable distinction to Losin [5] happens because of his
mistake in calculations of some of the coefficients in the dispersion relations.

From Fig. 2 it is observed that the phase velocity of the fundamental (first) mode of flexural
mode increases from the origin for long waves and tends to the common limit, viz., velocity of
Rayleigh surface wave for short waves as predicted by the exact plate theory and are found to be
perfectly approximated by the curves in Fig. 2 and are in agreement with the corresponding curves
of Ref. [1,21,23–26] except for the modification due to anisotropic effects of the material. The
phase velocity of the second mode decreases continuously from infinity for long waves and
approaches the velocity of shear mode for short waves. The correspondence between the group
velocities is also found to be good with the exception that it is found to be slightly more than the
velocity of shear mode at high frequencies in the case of first mode and increases to attain its
maxima at kh ¼ 3 and then decreases to its minimum (negative) value in the neighbourhood of
kh ¼ 4: It then increases to become close to the velocity of Rayleigh surface wave for short waves.
The group velocity of second mode is found to be comparably in agreement. The appearance of
the negative group velocity in a small neighbourhood of kh ¼ 4 in Fig. 2 is also noticed. Such an
effect was detected by Tolstoy and Usdin [24], and mentioned by some authors, e.g., Mindlin [26],
Redwood [27] and Losin [4].
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